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SINGLE MODE OPTICAL WAVEGUIDE DESIGN INVESTIGATION

1. Introduction

1.1 Purpose of Study

/jW{th the extremely low losses attained in optical wave-
guides over the past three years, it is expected that graded
index multimode systems with long repeater spacing'will be
dispersion limited. In that case the only recourse is to use
single mode waveguides. To fully utilize this potential, the
single mode waveguide design has to be simultaneously optimized
with respect to total loss and bandwidth of the system. Since
the bandwidth of a single mode waveguide is considered sufficiently
high for most telecommunication applications, the present work
has concentrated on total waveguide loss as would be experienced
in a real system.\“Mﬁny\lahgggtories have fabricated low loss
single mode waveguides(l'z’3’4yWhOWEVer, these have not been
systematically optimized to minimize total system loss;:>The
objective of this study is to experimentally determine the step
index single mode fiber loss dependence, by all mechanisms likely
to be experienced practically, upon the key fibér design parameters,
core diameter (2a) and fractional index difference (A); Only with this
systematic and comprehensive data base, will a rational choice of
and/or criteria for choosing fiber design parameters optimized for

a given application be obtained. =

\

1.2 Technical Background

The basic mechanisms for attenuation in waveguides are

well known, and have been extensively studied in multimode wave-

guides for several years. They are intrinsic absorption of the
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base glass, impurity absorption, intrinsic scattering of the base
glass, and losses due to externally induced perturbations such as
micro- or macro-bending, and interconnection losses.

1.2.1 Absorption

Single mode waveguides have been fabricated using

boron, fluorine, and phosphorus dopants in silica.(1’5’6)

However,
the simple binary system of germania doped silica has shown very
low intrinsic absorption (0.2 dB/km at 1550 nm(a)) and hence is

the system studied in this contract.

Impurity absorption in waveguides made today is
virtually restricted to the hydroxyl radical. For long distance
single mode waveguides the OH bands of particular interest are
the first overtone occurring at approximately 1380 nm and the com-
bination of this band with the fundamental vy stretching vibration
of the §i0, matrix which occurs at 1250 nm. From studies of the
loss as a function of OH concentration which have been done,(7)
it is required that the OH concentration be less than approximately
200 pob in order to achieve the loss goals. This level was
achieved in the processing used for the present work.

1.2.2 Scattering

Intrinsic glass scattering appears to be the
dominant loss mechanism in the primary region of interest for
single mode operation. This loss arises from two forms; density
fluctuations frozen into the glass at the time of manufacture and

concentration fluctuations arising from the use of multiple dopants

in the waveguide. It is the latter loss which is of some concern

for the proper design of single mode optical waveguides. It is




fairly well established(s’g) that as the A-value of the waveguide

increases the scattering loss also increases,

2 3

- -45+1.16A+0.43 A“+0.06 A (1)

Yg T W

where A is expressed as a percentage difference in index.

1.2.3 Microbending Perturbation Loss

Many models for single mode perturbation losses

(10)

exist. Peterman shows the loss depends directly on a power

of the mode spot size and propagation wavelength. Olshansky(ll)
has calculated the losses assuming a power law perturbation power
spectrum and finds the loss to depend upon the characteristic
V-parameter of the waveguide. A more recent analysis by Furuya

and Suematsu(lz)

using a Gaussian power spectrum shows that A

is the critical parameter and an experimental verification of the
model is presented. The latter work indicates that to maintain
microbending losses below 0.1 dB/km beyond a wavelength of 1.4 um
for the power spectrum presently observed in cabling, requires
that A 2 0.004. The microbending loss, Yug from this model obeys
the approximate relationship,

= = 2
X N(1/R)Z gf exp [-187(84)" ¢74-36 Micy(an/km),  (2)

Y -
uB ¢

where W is the width of the Gaussian power spectrum, N is the

average number of perturbations per unit lengta, (l/R)2 is the mean

square curvature of the bend, Ac is the cutoff wavelength, n the




waveguide core index, A the fractional index difference, and X the
operating wavelength and X -4 x 103 (see Section 5.1.1).
The equation indicates that microbending losses in the single
mode waveguide should increase dramatically as the wavelength is
increased appearing very similar to a vibration band edge in the
spectral transmission curve. For a given power spectrum associ-
ated with the cabling process this edge may be shifted to
sufficiently long wavelengths by a proper choice of the guide
parameters A and the cutoff wavelength Xc. Changing the fractional
index difference A from 0.004 to 0.005 moves the effect of this
edge by approximately 100 nm to longer wavelength.

While experimental verification of Equation (2)
was found for waveguides of two different A-values in jacketing

and cabling tests,(13)

the equation has not been systematically
tested over a large range of fractional index differences and
core diameters. Additionally, no laboratory test is known to
exist which induces the Gaussian power spectrum on the fiber and
hence simulates cabling. Such a laboratory test which predicts
cable performance a priori would be extremely useful in the

optimization of fiber design for various applications.

1.2.4 Macrobending Perturbation Loss

It is presently known that macrobending attenua-
tion also shows an exponentially increasing loss as a function of
decreasing bend radius and increasing wavelength. Marcatili
and Miller(la) have posed a model for this loss in which radiation
occurs as the wavefront exceeds the velocity of light as it

traverses the bend. This model ha. been shown to be in qualitative
(15)

agreement with experimental data.

It indicates that for the




characteristic guide parameter, V > 1.5, bend radii greater than

~10 cm will have very little effect on system loss. For the present
work it will be assumed that this bend radius does not place a

severe restriction on system deployment and it will be ignored.

1.2.5 Interconnection Losses

Since the attenuation rate of single mode wave-
guides is expected to be in the few tenths dB/km range, losses
associated with the interconnection of single mode waveguide
sections may represent a large fraction of total system loss.

For this reason it is important that the sensitivity of these
interconnection losses to the waveguide design parameters be
quantified.

Using a Gaussian beam approximation to the field
E distribution for the HEl1 mode, Gambling and co-workers(16’17)

have modelled the interconnection loss dependence on core diameter
and fractional index difference. Their companion experimental
work, however, did not cover the full range of fiber parameters

which may be necessary to properly optimize system performance.

1.2.6 Background Summary

The theoretical and experimental work cited above
forms the base for the present work. The common thread in these
previous studies is that either an isolated loss source and/or a
limited range of fiber design variables were considered.

Considering the loss sources isolated from one
another does not produce the optimum design. For example intrinsic

scatter loss (Eqn. 1) is minimized by decreasing the fractional
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index difference while the opposite is true for microbending

loss (Eqn. 2). Further, the validity of the theories have not been
tested over a wide range of fiber parameters hence extrapolation is
to date open to question.

1.3 Summary of Accomplishments

In this study these previous deficiencies were overcome
by a simultaneous investigation of all mechanisms having a signifi-
cant impact on overall fiber system loss. Step index fibers were
fabricated whose design parameters were varied over a sufficiently
wide range of values to accommodate the majority of applicationms.
The losses produced in these fibers by various mechanisms then
were determined quantitatively and compared with the existing step {
index theory.
The following is a summary of the specific accomplish-
ments and their interpretation with regard to the optimum design
of a single mode telecommunication fiber.
Twelve single mode waveguides were fabricated using both
the "inside" and "outside" process.(ls) The values of fiber
parameters are given in Figure 1.
A reproducible microbend measurement apparatus based on
linear pin arrays was designed and constructed.(lg)
A reproducible apparatus for both lateral and angular

offset loss measurements was designed and constructed.

The twelve waveguides were measured for microbend and H

lateral-angular offset losses.
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Pin array microbending loss data fits the Gaussian power

spectrum model extremely well over the entire range of design
variables. This suggests the values, A > 0.003 and 2a < 8.0 um
to minimize cabling microbend loss. This provides the first good
correlation between a laboratory test and actual cable results.

Measured lateral offset loss follows the theoretical model
to within 0.2 dB. Loss increases with decreasing core diameter
and increasing A and suggests, A £ 0.006 and 2a 2 4.8 um.

Measured angular offset loss is ~50% less than theoretically
predicted perhaps due to fiber end angle. Angular offset loss
however is not found to be a significant effect in determining
fiber design.

Fabrication variability can strongly impact the design
values chosen and this effect was quantized.

Beyond the scope of the original proposal, the inter-
connection loss dependence upon wavelength was quantified. The
data supports the theory.

The lateral offset data quantifies the allowable fabrica-
tion tolerance on core concentricity.

Based on analysis of the present data for simultaneous
minimization of all single mode loss sources, it is felt that the
design range, 0.003 < A < 0.006 and 5.6 um < core diameter
< 8 um, will encompass the majority of applications. The exact
value within this range will devend critically upon the actual

perturbation spectrum introduced by the cabling process as well
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as fiber manufacturing variability of the key parameters. The
present study allows extrapolation to the correct design as
additional cabling data beocmes available. Additionally it was
identified that the single mode fiber loss spectrum will provide
a way of inferring the cable perturbation power spectrum.

As a final product of the study, 4 km of low-loss single
mode fiber made by both the ''inside'" and '"outside' vapor phase

(18) were fabricated. Two kilometers each of two

oxidation process
design matrix points were prepared: 1) A = 0.004, 2a = 8 um

and 2) A = 0.005, 2a = 6 ym. Both fibers have a cutoff wavelength,
Ao, ¥ 1100 nm as determined by short length transmittance. This

should be appropriate for 1300 nm operation. The first of these is {

believed to be the lowest A-value acceptable given the present
level of cable perturbation and fiber processing variations. With
improvement in cabling and processing it is expected that the

A = 0.003 design range extreme will be optimum for telecommunica-

tion applications. The other design range extreme, is approximated
by the second pair of fibers. These would be expected to be useful
if cabling perturbations are more severe.

Since the cable power spectrum has been shown to have
such a dramatic effect on loss and fiber design, the present

work suggests that a future study to determine the power spectrum

associated with different cable designs and cable processes is
required. Single mode fibers of a few designs should provide a

powerful tool for determining the cable power spectrum.




2. Measurement System

2.1 Apparatus and Procedure

2.1.1 Microbend Test

The microbend test was modified from the random

as described in the contract proposal, to more
(19)

""sandpaper test,
reproducible linear pin arrays of different pin spacings.
A schematic diagram of the test is shown in Fig. 2. 1In this test

a 2 m length of the single mode fiber is 'woven'' through the pin
array perturber and the transmitted power is moritored in the
wavelength range (700-1800) nm. The microbend loss induced by

the pin array is evaluated by comparing the transmitted power in
the perturbed fiber with a reference. The reference used in this
experiment is the transmitted power in the unperturbed fiber.

This experiment is performed using pin array perturbers with
nominal pin spacings of 8 mm, 5 mm, 4 mm and 3 mm. The pin
diameters are 0.65 mm and the number of pins is held constant at 30.
The purpose of using these four different pin arrays is to apply
perturbations which differ primarily in frequency, however, am-
plitude change also occurs. Details of the perturbation spectrum
applied by the various pin arrays are given in Section 5.1.

2.1.2 Lateral and Angular Offset Test

Equipment to measure lateral and angular offset
loss has been designed and fabricated. A schematic diagram of
the test setup is shown in Figure 3. To obtain accurate and

reproducible results it is essential to carefully align the fibers.
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To achieve this, a system with various translational and rota-
tional degrees of freedom has been fabricated. A schematic
diagram indicating the various degrees of freedom and their
tolerances is shown in Figure 4. Here LI, LII and LIII, repre-
sent the translational degrees of freedom and AI and AII are
angular offsets around axes {(I) and (II) respectively. The rota-
tion of the receiver test fiber around its own axis "R" is "RI."
For example, for lateral offset measurements, the data has been
gathered along LI in steps of 0.1 um. This is made possible by
using a combination of computer controlled stepping motors,
differential micrometer and 3-D micropositioner stages. Such

an arrangement allowed the angular misalignment to be minimized
during lateral offset measurement and vice versa. In the angular
offset loss measurement, the fiber is indexed around axis (I)

in 4.36 mrad (15 minute) increments. This is accomplished by
means of a computer controlled rotary stepping stage.

To achieve detailed comparison of measurement

data with splice loss models it was judged that complete lateral

offset curves would be very useful. Thus the lateral offset

v wade

loss data were taken over a range of + 12.5 um from the zero
offset position in 0.1 um increments. In addition the lateral
offset measurements have been performed at various wavelengths
that cover an extended range of V-values both in single mode and
double mode regions of the waveguide. Such measurements have been
performed on all of the fibers and the data is presented in

Section 4. !




14

7 3ANOI1d

‘W3LSAS ALIALLISN3S
135440 NI WOQ33dd4 40 S33M93d

no | Vs
) ! B T —
o | 1v
1!
(1) y38i4 153 E%%%%

1531 H3AI3O

24

ov




15

In the case of the angular offset loss measure-
ments, data is taken over a + 10 degree range from zero offset

position in 4.36 mrad (15') increments. As in the case of lateral

offset, the experiments have been , erformed at various wavelengths.

To eliminate the effect of lateral offset during the angular

[ L

offset measurements, it is essential to align the test fiber end
I (Fig. 4) with the axis of rotation. Even a small misalignment
in this respect leads to lateral offset loss contributions in the
angular loss measurement. To eliminate this possibility, the
fibers are tested for zero lateral offset after each angular
offset increment. For accurate and reproducible results, the
test procedure is automated and computer controlled.

In both the lateral and angular offset loss
measurements a 4 m length of the test fiber is used for the source
(input) section (Fig. 3). For the output section, a 1 m length
of test fiber is used. 1In the present experiments, no index
matching oil is used at the splice junction of the test fiber as
it leads to 'dragging'" of the fibers during measurements.

2.1.3 Input Optics

The input optics associated with this study
includes a 500 watt tungsten filament lamp and condenser lens,
and a 3/4 meter grating monochromator (SPEX Model 1700). A
pinhole at the monochromator output is imaged onto the core of a
25 meter length of graded index multimode fiber. (Core diameter:

' 60 um; NA: 0.20). This input-relay-fiber transfers the input

light from the master bench to a separate test bench constructed
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for this study. The input light is coupled from the relay fiber
to the single mode fiber under test via a butt joint, in air.
Maximum coupling is achieved manually by adjustments of a 3 axis
micropositioner.

2.1.4 OQutput Optics

The output of the single mode fiber under test
is coupled to a graded multimode output-relay-fiber identical to
the input-relay-fiber described in 2.1.3. Coupling is achieved
in the same manner as described in 2.1.3. The output signal from
the single mode fiber under test is relayed back to the master
bench. A final relay is performed which transfers the output
signal to the detector. The detector relay fiber is a short
length of large core step index multimode fiber. Coupling is
achieved as described earlier. The detector is a high sensitivity,
low noise liquid nitrogen cooled germanium detector (North Coast
Co., Model EO-817-L).

2.1.5 Electronic Instrumentation and Computer

The high degree of reproducibility achieved in
the work performed for this contract was largely due to the
employment of computer assisted experimentation techniques.
Wavelength scanning, lateral and angular incremental positioning,
and data taking are accomplished under computer control
(Computer: DEC PDP-11/10; Interfacing: CAMAC Standard, Kinetic
Systems Corp.). Electronic amplification is achieved by standard
lock-in techniques (Amplifier: PAR Model 124A; Preamplifier: PAR




Model 116 Differential Preamp; Chopper: PAR Model 125A). The

initial stage of low noise preamplification before the lock-in i

3
is preformed within the North Coast LN2 cooled germanium detector 1
assembly employing a FET first stage operating at 77 K.
’
Data handling, computation, and display are
under computer control. Graphical display of final data is computer
drawn on a X-Y recorder (HP Model 7045A).
[ 4
L
i
P
;
N
3
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3. Waveguide Specimens

Before a fiber is selected for design study, various measure-
ments are done during and after fabrication to characterize the
product.

Electron microprobe analysis is performed on the waveguide
blank to determine the level of dopant in the core and the dopant
radial profile. This measurement is performed to supply a verifi-
cation of processing control and to assure that in the case of
the IVD process, that there is minimum loss of dopant in the center
of the core caused by "burnout." Optical micrographs are made of
the blank cross section to assure that the core is concentric and
non-elliptical. 1

The fiber attenuation is measured from 700 to 1600 nm by the
standard cut-back technique and a determination of the cut-off
wavelength, A _, is made by the transmission technique.

c
(20) is used to determine

The refracted near field technique
the refractive index profile of the fiber. From that measurement
the two key parameters of core radius, a, and fractional index

difference, A, are computed.(21’22)

The equivalent step values, thus
obtained, are designated 3(EQ.ST.) and A(EQ.ST.)‘ From these

the equivalent step value for the cutoff wavelength, kc(EQ.ST.)' is
calculated. The difference between Ac(EQ.ST.) evaluated from the
index profile and Xc(TRANS) obtained by transmitted power techniques
on a 2 m length of fiber is in the range of 100-200 nm. The reasons

for this diff (21,22)
erence are known and the cutoff value Ac(EQ.ST.)

is more appropriate for comparison of experimental data to models as




it represents the intrinsic guide parameters. In this study, the
equivalent step values are used in the comparison of the experi-

mental data with models.

A listing of the fibers evaluated in this study with the key

parameters of a(EQ.ST.) and A(EQ.ST.) is given in Table 1. Also

included are values of the cutoff wavelength determined by the
refracted near field technique, xc(EQ.ST.) and the transmitted

power technique, Ac(TRANS.)'
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4. Measurement Results

4.1 Microbend Test Data

The microbend test has been performed with various
linear pin array perturbers as described in 2.1.1. Examples of
the data are shown for one fiber in Figure 5. The excess attenua-
tion due to the microbend perturbation is plotted as a function
of wavelength in the range from 700-1800 nm. Depending on the
cutoff wavelength of the waveguide, the LP11 mode loss may also
be observed.

The complete set of experimental results for the micro-
bend test is given in Appendix A.

4.2 Lateral Offset Loss Data

An example of the data collected for the lateral offset
measurement is shown in Figures 6(a),(b). The raw data shown in
Figure 6(b) indicates the power transmitted through the fiber for
different lateral offset values. The peak of the curve indicates
the zero offset position. From such raw data the excess loss
(attenuation in dB) is evaluated as a function of lateral offset
in microns (Figure 6(a)). The attenuation is estimated with
respect to the peak value of the power. The complete set of
lateral offset loss data is given in Appendix B. It should be
noted that the measurements have been performed at various
V-values for the majority of fibers tested.

During the course of a lateral offset measurement,

the possibility exists for an inadvertant angular offset either
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due to fiber misalignment or the end angle being different from
zero degrees. This was found to have a large, undesirable effect.

With the addition of an angular misalignment, the resulting

lateral offset loss curve is not symmetric. An example of this
effect is presented in Figure 7 where the normalized power as a
function of lateral offset is shown for various angular misalign-
ments. As the angular misalignment direction is changed the
asymmetry of the plot changes, correspondingly. In this study,
much effort has been taken to minimize this type of problem.

4.3 Angular Offset Loss Data

The format used for collecting the angular offset loss
data is similar to the one used for the lateral offset loss. An
example of the angular offset loss data for one fiber at one
wavelength is given in Figures 8(a),(b). The raw data is showp
in Figure 8(b) along with a smoothed normalized plot of output
power vs. angular offset.

The angular offset loss (dB) is calculated from the
smoothed data and is presented in Figure 8(a).

Similar to the problem of unwanted angular misalignments
compounding the lateral offset loss data we found that the inverse
is also true. During the angular offset loss measurement great
care had to be exercised to prevent unknown amounts of lateral
offset. This is done by verifying that the lateral offset is
zero after each angular offset increment. If this procedure is
not followed, there could be a significant lateral offset
contribution. The power vs. angular offset is narrower than it

should be when lateral offset effects are not eliminated. The
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seriousness of this effect is shown in Figure 9.
Extensive angular offset data has been collected during

this study and the complete set is included in Appendix C.
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ANGULAR OFFSET
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FIGURE 9

The effect of unwanted lateral mis-

alignment on the angular offset loss
measurement.
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5. Analysis and Discussion

The experimental data obtained during this study is used
to understand the parametric dependences of the microbend and
splice losses. To obtain quantitative understanding of the
loss mechanisms, a comparison of the experimental data to the
models indicated in the technical proposal is done. Such analysis
which helps in the identification of the key tradeoffs involved in
optimizing the total system loss, is expected to be critical in
the design of single mode optical communication systems.

5.1 Microbend Test

5.1.1 Model
Various microbend loss models have been developed
for both multimode and single mode applications. The results
depend to a great extent on the type of perturbation spectrum
which is assumed. Various spectra including exponential and more
general power law dependences have been considered. Some of the

recent work by Furuya and Suematsu(IZ)

indicates that the perturba-
tion applied by the cabling process can be fitted by a Gaussian
spectrum. For this reason, the experimental data obtained by the
pin array test is compared to this model. In this model the
microbend loss is given by, )

vyg = AR W <1/A>exp[-y<wlzl> 2%)  aB/km, ( 3)

where N is the average number of bends per unit length, (1/R)2

is the mean square of the curvature of the fiber axis, W is the




correlation length, Ac is the cutoff wavelength, n, is the index

of the core, and A is the relative refractive index difference.
The factors x and y depend on (x/xc) and are given in Reference 12
in both graphical and tabular form. Approximate analytical forms

for the factors are given below.

2
17485-20833 (-)+7596 (3-) ()
c

c
187 e-4-36(A/2) (5)

X

Ne

[ K

y

5.1.2 Comparison of Model and Data

To facilitate the comparison of the experimental
data to the Gaussian model, a computer program has been developed.
An attempt is made to fit the microbend losses induced by the
various pin array perturbers to the Gaussian model by wvarying the
two parameters W and N(I;).

An exagple of such a fit is shown in Figure 10.
The fit between the experimental data and the microbend losses
predicted by the Gaussian model was found to be very good over a
wide range of attenuation values. Thus, the following important
conclusions can be drawn.

The perturbation applied by the linear pin array perturbers
can be modeled quite accurately by a Gaussian spectrum.
The parameters of the Gaussian spectrum applied by the
pin arrays can be controlled by the pin spacing.
Since the random microbends introduced by the

cabling process is believed to be Gaussian(lz) we have found a

strong indication that the linear pin array test can duplicate
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the perturbation spectrum in a cabled fiber. Based on this

result, the pin array perturber may be used not only for compar-
ative evaluation of different designs, but also for a meaningful
prediction of cabled fiber behavior.

From the above comparisons between the experi-
mental data and Gaussian model the perturbation parameters for
the various pin arrays have been obtained. The values are listed
in Table II and indicate the average values. The variations in
the perturbation values can be explained by an uncertainty in A and
a, as measured by the refracted near field,and also by the profile
variation from step values. The variation in A required to
account for the variation in the perturbation parameters is less

than 0.0005 which is within the experimental error.

TABLE II

PERTURBATION PARAMETERS FOR THE LINEAR PIN ARRAYS

Pin Spacing (mm) W (um) §217E2; (um) ~3
8 800 1.9 x 10720
5 395 1.1 x 10719
4 320 1.4 x 10719
3 265 2.5 x 10717

The summary of microbend testing performed in
this contract is shown in Figure 1l1. The notation, (AuB), denotes

the wavelength at which the excess loss due to the linear pin array

perturbation reaches the 0.1 dB level. 1In Figure 1l the Gaussian
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perturbation width of the linear pin array is plotted against XuB
normalized to the cutoff wavelength. The numbers inside the data
circles represent the fiber numbers listed in Table J. Based on
the A values, the fibers can be catagorized into three broad groups
of (1) low delta (0.002-0.003), 2) medium delta (0.004-0.006) and
3) high delta (0.008-0.01). The behavior within a group depends

on the core radius. Results presented in the form of Figure 11
allows a comparative study to be made of various fiber designs

from which a range of fiber parameters can be picked for an optimum
design. To obtain a realistic design the expected value of cable
perturbation is also shown (circle with letter "J").

This point is arrived at based on the observation
that the cabled perturbation evaluated by Furuya et.al. leads to
the microbend edges with (qu/Ac) ~ (1.0-1.1) for fibers with
A £ .003. The solid line drawn through the circle J , divides the
"'safe" designs from ''unsafe" designs for this level of cabled
perturbation. It should be pointed out that in arriving at the
dividing line, a margin of safety of about 100 nm has been included.
This allows for any variation that may be present in processing
the fiber and cable.

Based on the above analysis, the optimum designs
from a microbend point of view require index values A 2 0.003 and
core radii a < 4.0 ym. It should be pointed out that lower A values
could be allowed for cable structures which are improved in design

over the one cited in reference (12)., As will be discussed later,




the lowest A design consistent with the microbend loss require-
ment, leads to the optimum design for 1300 nm operation.

5.2 Splice Loss Tests

5.2.1 Model

For comparison with experimental data, the model
developed by Gambling and co-workers(16'17) has been used in this
work. Considerable simplification was achieved in their work by
assuming a Gaussian field distribution to replace the HEll mode.
To compare the model with results obtained over a wide range of
V-values, the variation of normalized spot size w with V has been
incorporated in this study.

The expressions for lateral and angular offset

loss given in Reference 16 have been rewritten in the forms given

below.
, 2,17 8,2
Lateral offset loss: Ypar = T (;) (dB) (6)
W
2,2 , o 2
Angular offset loss: Yang = 1-09 wV (75) (dB) (7)

where the normalized spot size is given by,

w= 1 0.65+ 25 + 238, (8)

v \'

and, § is the lateral offset, a is the angular offset, a is the core
radius, and V is the normalized frequency. The parameters (%)

and (7%), which appear explicitly in the equations for splice

loss, will be used later to form a concise graphical summary of an

analysis comparing the theoretical model with experimental data.
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5.2.2 Comparison of Model and Data

o5 i i e == S

W e

5.2.2.1 Lateral Offset Loss

i To facilitate the comparison of the model

with data, a computer program has been developed which calculates

’
the offset losses using the fiber parameters and the experimental
conditions of the test. Thus a direct comparison is made of the
model with data. An example of such a comparison is shown in

»

Figure 12. The comparisons between data and experiment are made
at three wavelengths for the lateral offset test. The comparison
in this case indicates good agreement between the model and
experimental data up to excess loss levels of 2-3 dB. Bevond this
level, experimental splice loss does not fall off as rapidly as
predicted by theory. Based on these observations, it can be

concluded that:

ppppe——

The Gaussian beam approximation is sufficiently accurate
up to at least the 2.0 dB loss level.

The departure between model and data beyond the 2 dB level
may be either due to a non-Guassian field distribution

in the wings, to higher order mode contributions, or, to

reflections at the joint.

A summary of the lateral offset loss characteristics of the fibers
tested and the comparison with'! the model is presented in Figures

13 and 14 where the parameter (§/a) is plotted vs. (A/Ac) for

excess losses of 1 dB and 0.25 dB, respectively. The numbers in
the data circles represent the fiber numbers listed in Table I.

The solid curve represents the average of the experimental data
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whereas the broken line represents the model. In Figure 13,

representing 1 dB excess loss, the difference between the data
and model is equivalent to an under estimation of the lateral off-
set by approximately 0.2-0.3 um whereas in Figure 14, it corres-
ponds to a difference of 0.15-0.25 um. Such small differences
lead to excess losses less than 0.15 dB and are thus within the
experimental accuracy of the system. For example, the differences
of the above magnitude can be introduced by scanning 0.1-0.2 um
below the core diameter.

Apart from this small shift, the variation
of the parameter (§/a) with (A/kc) follows the trend predicted by
the model. Based on this analysis, it can be concluded that the
model and the data fit within the experimental accuracy over a
wide range of A, a and wavelengths.

The representation given in Figures 13
and 14 allows the identification of design parameters necessary to
keep the lateral offset loss below a certain value. For example,
for lateral offset loss less than 0.25 dB and a waveguide operating
at A/Xc > 1.15 (i.e. 1310 nm operation for waveguide with Ag ~ 1150
nm), the parameter (§/a) has an experimental value of 0.215. This
indicates that if a splice tolerance of 0.5 um is possible, the
core radius has to be greater than 0.5/0.215 i.e. a 2 2.33 um.
Similar estimates can be made for other possible splice loss

tolerances.




The important conclusion of the analysis
above is that for splice loss levels less than 0.25 dB, with
practical splice misalignment of 0.5 um, the optimum designs
require core radii a 2 2.4 um.

~

5.2.2.2 Angular Offset Loss

The analysis of angular offset loss is
made in a fashion similar to the case of lateral offset loss. A
summary of the data is given in Figure 15, where the parameters,
(a/vVR), is plotted as a function of (A/Ac) for the fibers analyzed.
The solid line corresponds to the values predicted by the model.
The dotted line corresponds to the line that represents the average
of the data points. There appears to be a systematic offset
between model and data of approximately 0.6 degrees. The scatter
within the data is, on the average, 0.26 degrees, which corresponds
to the offset step size used in the experiment.

The data indicates that the angular

offset tolerance even for a fiber with 4 ~ 0.003 is .2 degrees

for a 1 dB excess loss and approximately 1 degree for 0.25 dB
excess loss. These tolerances are sufficiently large that angular
offset loss is not expected to be a significant factor for the

waveguide designs being considered for most applicationms.
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6. Deliverables

In addition to the final report presenting the experimental
data and analysis, two 1.1 kilometer lengths of two differently
designed single mode waveguides are provided to the sponsor. The
two waveguide designs were chosen as a result of this study and
are within the optimum design as described in Section 5. The
values of core radii and fractional index differences that were
picked are near two extremes within the defined region. The
fiber identification numbers and the pertinent properties are
given in Table IIIl. Fiber numbers 3461-03 and -04 are 1.1 km
lengths of OVD (outside vapor deposition) processed waveguide.
They represent the low A, large radius extreme in the optimum
design region. The index profile is the standard step-index
type with some inevitable profile rounding caused by several
phenomena, principally, high temperature diffusion of core dopant,
which occur during the various fabrication steps.

Fiber numbers 4350-03 and -06 are 1.1 km lengths of IVD
(inside vapor deposition) processed waveguide. They represent
the high 4, small radius extreme of the optimum design region.
Additionally, the index profile for this design is chosen to be
of the depressed cladding type. The reason for this choice is to
allow a high A for increased protection against severe cases of
cable induced microbending without suffering the penalty of an
increase in fiber attenuation due to intrinsic scattering. A
schematic of the profile for fiber numbers 4350-03 and -06 is
shown in Figure 16.
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TABLE III

Contract Deliverable Fibers

Length: 1.1 km each

OVD Process IVD Process
Fiber No. 346104 346103 435003 435006
Parameter
4.0 um 4.3 um 3.2 um 2.9 um
0.0035 0.0035 0.0048 0.0055
1299 nm 1385 nm 1206 nm 1182 nm
1130 nm 1140 nm 1048 nm 1018 nm !

1.8 dB/km 2.0 dB/km 2.49 dB/km 2.56 dB/km

0.44 dB/km 0.63 dB/km 0.66 dB/km 0.76 dB/km

0.31 dB/km 0.36 dB/km 0.32 dB/km 0.44 dB/km
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Fibers of both designs, chosen for the contract deliverables,
have cut-off wavelengths ranging from 1018 to 1140 nm, as measured
by the transmitted power technique on short lengths. This should
be appropriate for 1300 nm single-mode operation. The fibers are
acrylate coated for good strength protection and have been screen
tested, on-line, at 25 KPSI (IVD) and 50 KPSI (OVD). The per-
formance target, as listed in the original Technical Proposal,
also called for Y1550 < 0.8 dB/km. It will be noted in Table
that all four deliverable fibers are well beiow the target
attenuation with values of 0.34 avg. (OVD) and 0.38 dB/km avg.
(IVD).

L e T L S oA




7. Summary and Conclusions

This investigation is a broad based study of some of the
practical factors affecting overall single-mode waveguide loss.
The key objective is to determine the optimum range of design
parameters which simultaneously minimizes splice, cabling, and
intrinsic waveguide losses.

Step-index, single mode fibers were fabricated having a
range of the key parameters (core diameter and fractional index
difference) which is considered wide enough to accommodate the
majority of applications. The losses produced by microbending
and splicing were determined quantitatively and a comparison
made with existing theories.

Resulting from this study an optimum design criteria is
made. Fibers, of two designs, were fabricated, in long lengths,
as deliverables to the sponsor.

The following is a summary of specific accomplishments and
conclusions.

7.1 Test Fiber Fabrication

Eleven IVD ("inside" process) fibers and one OVD
("outside" process) fiber were fabricated on a best-effort-basis.
The ranges of the key parameters that were achieved are

Core diameter: 4.2-9.4 um
Fractional index difference: 0.0025-0.011

The fibers consist of a germania-silica binary core and a silica
cladding. Outside diameter is nominally 125 um and all fibers

were coated with a protective acrylate compound.
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Qualification measurements performed before accepting
fibers into this program included standard attenuation measure-
ments, with a determination of cutoff wavelength by the transmitted
power technique; and, specialized composition and refractive index
measurements. From the latter measurements, values were obtained

for effective core diameter and effective fractional index difference.

7.2 Microbend Loss

7.2.1 Procedure
Apparatus was specifically designed and con- ]
’
structed for this program. Four linear pin arrays each of : i

different pin spacings were used to measure the microbend loss

of each fiber as a function of perturbation parameters and also
¢ as a function of wavelength in the range from 700 to 1800 nm. ,
‘ 7.2.2 Results
Linear pin array microbending loss data fits the
Gaussian power spectrum model over the complete range of design
parameters tested. A computer analysis of data has led to the

following design criteria to minimize cabling microbend loss:

Fractional index difference: A > 0.003
Core diameter : 2a < 8.0 um

The measurements and analysis of microbend losses in this program
have provided the first good correlation between a laboratory

test on fibers and previously reported cabling results.

7.3 Splice Losses

7.3.1 Lateral Offset Loss

‘ 7.3.1.1 Procedure
Test apparatus was designed and built i

specifically for this program. A system with a number of degrees 1




of freedom was built to accurately and reproducibly measure the

lateral offset loss of all fibers. Data were taken, under
computer control, over the offset range of + 12.5 um from the
zero offset position in 0.1 um increments. In addition, measure-
ments were made at a number of different wavelengths covering an
extended range of V-values.

7.3.1.2 Results {

A comparison was made of data with a

bk

simplified theoretical model based on the replacement of the
HEll-modes by an equivalent Gaussian field. The measured lateral
offset loss follows the theoretical model to within 0.2 dB. The
data comfirmed that loss increases with decreasing core diameter

and increasing fractional index difference.

The analysis has led to the following
design criteria to minimize lateral offset loss in splicing:

0.006
4.8 um

Fractional index difference: A

<
Core diameter : 2a >

7.3.2 Angular Offset Loss

7.3.2.1 Procedure
The test apparatus, described in 5.3.1.1,
was also used for angular offset loss measurements. Data were
taken over a + 10 degree range from the zero offset position in
0.25 degree increments. Measurements were made at various wave-
lengths. To maximize accuracy and reproducibility the test

procedure is automated under computer control.




7.3.2.2 Results

The analysis of angular offset loss is
made similarly as in the case of lateral offset loss. The same
theoretical model, based on an equivalent Gaussian field, was
used to compare measurement with model.

The measured angular offset loss was
found to be ~507 less than theoretically predicted. The cause
may be fiber end angle effects. However, the offset loss due to
an angular misalignment was not found to be significant. An
example of this relatively high tolerance was shown for a
A = 0.003 fiber. Angular offsets necessary to produce 0.25 and
1.00 dB excess losses were measured at -1 and -2 degrees,
respectively. These tolerances are sufficiently high that angular
offset loss is not expected to be a significant factor for wave-
guide designs being considered in most applicatioms.

7.4 Summary of Fiber Design Criteria

Based on the analysis of measurements performed in this
contract the simultaneous minimization of all single mode loss
sources, is achieved within the design range, 0.003 < A < 0.006
and 5.6 um < core diameter < 8 um. A more exacting definition of
parameters within this range will depend critically upon the actual
perturbation spectrum introduced by the cabling process as well
as fiber manufacturing variability of the key parameters. The
present study allows extrapolation to the correct design as
additional cabling data becomes available. Additionally it was

identified that the single mode fiber loss spectrum will provide

a way of inferring the cable perturbation power spectrum.
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7.5 Contract Deliverables

As a final product of the study, 4 km of low-loss single
mode fiber made by both the '"inside" and "outside' vapor phase
oxidation processes were fabricated. Two kilometers each of two
design matrix points were prepared: 1) A = 0.004, 2a =z 8.0 um
and 2) A > 0.005, 2a = 6 um. _Both fibers have a cutoff wavelength,
Ac * 1100 nm as determined by short length transmittance. This
should be appropriate for 1300 nm operation. The first of these
is believed to be the lowest A-value acceptable given the present
level of cable perturbation and fiber processing variations. With
improvement in cabling and processing it is expected that the
A = 0.003 design range extreme will be optimum for telecommunica-
tion applications. The other design range extreme, is approximated
by the.second pair of fibers. These would be expected to be useful
if cabling perturbations are more severe.

7.6 Future Study Recommendations

Since the cable power spectrum has been shown to have
such a dramatic effect on loss and fiber design, the present
work suggests that a future study is required to determine the
power spectrum associated with different cable designs and cable

processes. Single mode fibers of a few designs should provide a

powerful tool for determining the cable power spectrum.
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APPENDIX A

Microbend Test Data

Excess loss as a function of wavelength comparison of

experimental data (E) to Model (T). -
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MICROBEND TEST
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MICROBEND TEST
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MICROBEND TEST
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MICROBEND TEST
FIBER NO.: 510802
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MICROBEND TEST
FIBER NO.: 510802
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APPENDIX B

’

Lateral Offset Test Data ;

5 ) Excess loss as a function of lateral offset: comparison of

g experimental data (E) to Model (T). '
’
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APPENDIX C

Angular Offset Test Data

Excess loss as a function of angular offset: comparison of

experimental data (E) with Model (T).
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